HIV-associated Wasting Continued to Occur in People Living With HIV, Despite Modern Antiretroviral Therapy

As HIV treatment advances and the management of persistent chronic comorbidities are prioritized, HIV-associated Wasting, as a disease state, should not be overlooked. A Retrospective Medical and Pharmacy Claims Study (2012-2018) across payer markets was conducted to understand the ongoing prevalence of HIV-associated Wasting in the United States.

Presented at the Miami Center For AIDS Research (CFAR)- HIV & Aging in the era of ART and COVID-19, February 8-9, 2021; Virtual.
Selection Criteria and Study Design

• Retrospective medical and pharmacy claims study using the IBM® MarketScan® Commercial and Medicare Supplemental Database and Medicaid Database
• Selection Criteria of the HIV+ Study Population
 * Patients might have met more than one criterion
 * Criteria requiring ≥2 outpatient diagnosis claims were required to be on separate service dates
• Defined as first date that all criteria were met between July 1, 2012 and September 30, 2018.
• 2012-2013 includes Medicaid only; 2019 includes Commercial/Medicare through March only.

HIV-associated Wasting Cohort

A. ≥1 inpatient claim or ≥2 outpatient claim (with same diagnosis code on different service date or combination of any diagnosis below on different dates) with a diagnosis for weight loss

B. A claim for appetite stimulant or non-testosterone anabolic agent

C. Evidence of enteral or parenteral nutrition

D. At least two of the following:

- Presence of only one medical claim for weight loss or wasting in the primary or secondary position; Anorexia (≥1 inpatient claim or ≥2 outpatient claims at least 30 days apart)
- A claim for testosterone (and derivatives), growth hormone, thalidomide, or high-calorie nutritional supplements

Total HIV-associated Wasting Cohort

What is Real World Evidence (RWE)?

RWE is clinical evidence about the use and benefits or risks of a treatment based on real world data—obtained through randomized trials, pragmatic trials, or observational studies.

Methods

Selection Criteria and Study Design

• Retrospective medical and pharmacy claims study using the IBM® MarketScan® Commercial and Medicare Supplemental Database and Medicaid Database
• Selection Criteria of the HIV+ Study Population

Baseline Period

Demographics (age, gender, comorbidities, other treatments as applicable)

Post-Index Follow-Up Period

Treatments patterns, healthcare resource utilization and cost, from index date to end of study period, plan disenrollment, or death

Index Date

Jan. 2012

Mar. 2019

Patient identification period

July 2012

Sep. 2018

Strengths

• Claims databases allow for analysis of large numbers of patients over time and are generally representative of the US patient population.
• Pharmacy claims provide an understanding of a patient’s intent to take a prescribed medication; whereas a medication order would only show what medication a prescriber is proposing to treat a patient.
• Ability to better understand underserved populations which were not available in previous clinical studies with traditional design.

Limitations

• Claims data are not specifically collected for research purposes, and diagnostic and drug-use information are not always validated. As such, there can be missing information that limits the inferences that can be made from the data.
• As an analysis of administrative health care claims data, it does not take into account all clinical information.

HIV Population

Total Patients with HIV diagnosis between July 1, 2012 – Sept 30, 2018

N=196,297

INCLUSION: ≥2 outpatient claims (>30 days apart) or ≥1 inpatient claim for HIV

N=153,903

INCLUSION: Patients ≥18 years of age on the index date

N=152,256

EXCLUSION: Patients with any malignancies

N=146,966

INCLUSION: Patient continuously enrolled ≥6 months pre- and post-index

N=42,587

Methods (continued)

Strengths

• Claims databases allow for analysis of large numbers of patients over time and are generally representative of the US patient population.
• Pharmacy claims provide an understanding of a patient’s intent to take a prescribed medication; whereas a medication order would only show what medication a prescriber is proposing to treat a patient.
• Ability to better understand underserved populations which were not available in previous clinical studies with traditional design.

Limitations

• Claims data are not specifically collected for research purposes, and diagnostic and drug-use information are not always validated. As such, there can be missing information that limits the inferences that can be made from the data.
• As an analysis of administrative health care claims data, it does not take into account all clinical information.

Study Strengths and Limitations

Methods

Selection Criteria and Study Design (continued)

HIV+ Study Population

N=42,587

n (%)

A. ≥1 inpatient claim or ≥2 outpatient claim (with same diagnosis code on different service date or combination of any diagnosis below on different dates) with a diagnosis for weight loss

6,873 (16.1)

Nutritional marasmus, Other protein-calorie malnutrition, Anorexia nervosa, Abnormal loss of weight and underweight (unintentional weight loss), Feeding difficulties and mismanagement, Failure to thrive, Cachexia, Effects of hunger, Adult neglect (nutritional), Body Mass Index (BMI) <19, adult

B. A claim for appetite stimulant or non-testosterone anabolic agent

1,644 (3.9)

Appetite stimulants (dronabinol, megestrol) and Anabolic agents (oxandrolone, nandrolone, oxymetholone, dehydroepiandrosterone [DHEA], 7-oxo-DHEA, androstenedione)

C. Evidence of enteral or parenteral nutrition

776 (1.8)

Enteral infusion of nutritional substances, Enteral nutrition home therapy, Enteral feeding supplies, Enteral nutrition formula/additives, Enteral nutrition infusion pump, Total parenteral nutrition home therapy, Parenteral nutrition solution/additives, Parenteral nutrition supplies, Parenteral nutrition infusion pump, Aminosyn, Fresamine, Procalamine, Travasol

D. At least two of the following:

122 (0.3)

Presence of only one medical claim for weight loss or wasting in the primary or secondary position; Anorexia (≥1 inpatient claim or ≥2 outpatient claims at least 30 days apart); A claim for testosterone (and derivatives), growth hormone, thalidomide, or high-calorie nutritional supplements

Total HIV-associated Wasting Cohort

7,804 (18.3)
Estimated HIV-associated Wasting Prevalence

- Among the HIV+ Study Population (n=42,587), 64.0% were on ART (n=27,242), 36.0% were not on ART (n=15,345)
- Across the span of the 6 year retrospective medical and pharmacy claims analysis (2012-2018), it was estimated that greater than 1 in 6 people living with HIV in medical care had a medical and/or pharmacy claim of HIV-associated Wasting or cachexia
- 18.3% of HIV-positive patients were identified as having HIV-associated Wasting
- 17.0% of patients were on antiretroviral therapy
- 19.1% were not on antiretroviral therapy

Estimated HIV-associated Wasting Prevalence During a 6 Year Period (2012-2018)

Total HIV-associated Wasting Population (+ART/-ART)	18.3% (N=7,804)
HIV-associated Wasting +ART	17.9% (N=4,871)
HIV-associated Wasting -ART	19.1% (N=2,933)

Baseline Demographics

A majority of patients in this study were male

- The HIV-associated Wasting cohort was older at HIV index compared to non-HIV-associated Wasting

Male, n (%)	22,700 (65.3)	4,816 (61.7)	2,972 (61.0)	1,844 (62.9)	
Age on HIV index date	Mean (SD)	43.5 (12.5)	46.4 (12.0)	46.6 (11.6)	49.4 (12.3)
18 - 39 years of age, n (%)	12,805 (36.8)	2,100 (26.9)	1,521 (31.2)	579 (19.7)	
40 - 64 years of age, n (%)	20,908 (60.1)	5,330 (68.3)	3,295 (67.7)	2,035 (69.4)	
65+ years of age, n (%)	1,070 (3.1)	374 (4.8)	56 (1.1)	319 (10.9)	

Age at first evidence of HIV-associated Wasting

Mean (SD)	48.1 (12.2)	62.2 (11.7)	51.4 (12.4)
18 - 39 years of age, n (%)	1,856 (23.8)	1,365 (28.0)	491 (16.7)
40 - 64 years of age, n (%)	5,451 (69.9)	3,398 (60.5)	2,067 (70.9)
65+ years of age, n (%)	497 (6.4)	122 (2.5)	375 (12.8)

Comorbidities

- The HIV-associated Wasting cohort had significantly higher comorbidity burden with Charlson Comorbidity Index (CCI)* mean (SD) compared to non-HIV-associated Wasting: 3.6 (3.0) vs. 2.0 (2.2)
- Nearly all Charlson comorbidities were more common in the HIV-associated Wasting cohort compared with the non-HIV-associated Wasting cohort

- Patients within the HIV-associated Wasting cohort had higher proportions of metabolic disorders

Results

Insurance Status

A greater number of people living with HIV-associated Wasting were insured by Medicaid

Commercial, n (%)	12,806 (36.8)	1,040 (13.3)	836 (17.2)	204 (7.0)
Commercial and Medicare supplement Population Region, n (%)*	n=12,806	n=1,040	n=836	n=204
North East	2,387 (18.5)	166 (16.0)	112 (13.4)	34 (26.5)
Western	1,530 (12.0)	127 (12.2)	97 (11.6)	30 (14.7)
South	7,184 (56.1)	612 (58.8)	505 (60.4)	107 (52.3)
West	1,706 (12.8)	133 (12.8)	120 (14.4)	13 (6.4)
Unknown	19 (0.2)	2 (0.2)	2 (0.2)	0 (0)
Medicaid, n (%)	21,977 (63.8)	6,764 (86.7)	4,035 (82.8)	2,729 (93.0)
Medicare Dual eligible,n (%)	9,090 (41.4)	2,597 (38.4)	536 (13.3)	2,661 (75.3)
Race for Medicaid Population, n (%)*	n=19,248	n=5,960	n=4,035	n=2,729
Hispanic	286 (1.5)	61 (1.0)	49 (1.4)	12 (0.4)
Other	195 (1.0)	49 (0.8)	29 (0.8)	20 (0.7)

Insurance Status

A greater number of people living with HIV-associated Wasting were insured by Medicaid

Total HIV-associated Wasting	N=34,783	Total HIV-associated Wasting +ART	N=7,804	Total HIV-associated Wasting -ART	N=2,933
Mean (SD)	48.5 (12.5)	51.4 (12.4)	50.3 (12.6)	54.4 (12.9)	
Diabetes w/o chronic complication	6.8	11.7	8.9	7.1	
CHF	10.8	15.0	14.9	18.7	
Mild liver disease	10.8	15.0	14.9	18.7	
CBVD	21.2	25.0	25.2	29.9	
Renal disease	20.6	28.1	25.0	29.9	
Diabetes w/ chronic complication	41.1	41.1	41.1	41.1	

Comorbidities

- The HIV-associated Wasting cohort had significantly higher comorbidity burden with Charlson Comorbidity Index (CCI)* mean (SD) compared to non-HIV-associated Wasting: 3.6 (3.0) vs. 2.0 (2.2)
- Nearly all Charlson comorbidities were more common in the HIV-associated Wasting cohort compared with the non-HIV-associated Wasting cohort

Patients, %	40	30	20	10	0
Diabetes w/o chronic complication	64	54	44	34	24
PVD	71	61	51	41	31
CHF	10.8	15.0	14.9	18.7	
Mild liver disease	10.8	15.0	14.9	18.7	
CBVD	21.2	25.0	25.2	29.9	
Renal disease	20.6	28.1	25.0	29.9	
Diabetes w/ chronic complication	41.1	41.1	41.1	41.1	
Select HIV/AIDS Conditions and Opportunistic Infections

- The HIV-associated Wasting cohort had higher proportions of opportunistic infections (OI) and HIV/AIDS-related conditions compared to the non-HIV-associated Wasting cohort:
 - 64.3% of the HIV-associated Wasting cohort had ≥1 diagnosis of an OI vs. 38.6% in the non-HIV-associated Wasting cohort, p<0.0001
- Within the HIV-associated Wasting cohort, the HIV-associated Wasting +ART cohort were more likely to have ≥1 diagnosis of an OI compared to the HIV-associated Wasting –ART cohort (66.0% vs. 61.3%, respectively)

ART Utilization at HIV Index

- At HIV-index* date, >35% of people living with HIV had no evidence of a pharmacy claim and >45% of people living with HIV in the Medicaid population, who were untreated, had no evidence of a pharmacy claim for ART
- cART† was the most common treatment overall, within the Medicaid population and HIV-associated Wasting cohort; whereas STR was most common in the Commercial and Medicare Supplement population and non-HIV-associated Wasting cohort

Correlates of HIV-associated Wasting

- In logistic regression analysis, race and ART status were not found to be correlates of HIV-associated Wasting
- The strongest associations with HIV-associated Wasting were with Medicaid insurance and hospitalization(s) post-HIV index

Claims for CD4 and viral load tests were a surrogate marker for being in care

*At index includes medications used 12-months post-HIV index;
†cART is defined as any fixed dose combination or greater than, or equal to, 2 single agents

<table>
<thead>
<tr>
<th>Odds Ratios (95% Confidence Intervals)</th>
<th>Decreases Risk</th>
<th>Increases Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (continuous)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (vs. female)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black (vs. not black)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medicaid (vs. Commercial or Medicare Supplemental plan)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥1 pharmacy claim of ART within 12 months of HIV index (vs. none)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interaction ART Medicaid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charlson Comorbidity Index (continuous)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥1 diagnosis of an HIV/AIDS-related condition (vs. none)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥1 CD4 and/or VL test claims in the ± 9 months to HIV index (vs. <1 testing)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥1 Post-HIV index hospitalization (vs. none)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥1 Post-HIV index ED visit (vs. none)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P-values:

- Age: 0.0001
- Male: 0.7963
- Black: 0.2628
- Medicaid: 0.0725
- Charlson Comorbidity Index: 0.0001
- ≥1 diagnosis of an HIV/AIDS-related condition: 0.0001
- ≥1 CD4 and/or VL test claims: 0.0001
- ≥1 Post-HIV index hospitalization: 0.0001
- ≥1 Post-HIV index ED visit: 0.0001

Claims for CD4 and viral load tests were a surrogate marker for being in care.

Results (continued)
Conclusion

This analysis indicates that HIV-associated Wasting exists in the era of modern antiretroviral therapy. HIV-associated Wasting also increases with age and is associated with a significant comorbidity burden. Further research is needed to understand these relationships.

Visit HIVWasting.com for more information about HIV-associated Wasting

Statistical Analysis

• Prevalence of HIV-associated Wasting
 - Cumulative prevalence was estimated for the study period (2012-2018) and reported in terms of frequencies and percentages

• Unadjusted bivariate analyses compared demographic and clinical characteristics
 - Student's t-tests or Wilcoxon rank-sum tests were used for continuous variables and reported in terms of means, standard deviations (SD), medians, and ranges
 - Chi-square tests were used for categorical variables and reported in terms of frequencies and percentages

• Correlates of HIV-associated Wasting
 - Multivariate logistic regression analyses were conducted to assess demographic and clinical correlates of HIV-associated Wasting